官方微信

SEARCH

Submit
Cancel

NEWS

Focus on Right, share the wonderful moments of enterprises and exhibitions, popularize product technical knowledge, and answer frequently asked questions

/
/
/
What are load cells and force sensors? What is the principle and characteristics?

What are load cells and force sensors? What is the principle and characteristics?

(Summary description)A load cell - sometimes referred to as "force", "weighing" or "weight" - is a transducer that converts the load applied to it into a measurable (analog or digital) output. The output is proportional to the force or load applied. Below we will describe how to use load cells and the different types of load cells for force measurement.

What are load cells and force sensors? What is the principle and characteristics?

(Summary description)A load cell - sometimes referred to as "force", "weighing" or "weight" - is a transducer that converts the load applied to it into a measurable (analog or digital) output. The output is proportional to the force or load applied. Below we will describe how to use load cells and the different types of load cells for force measurement.

Information

A load cell - sometimes referred to as "force", "weighing" or "weight" - is a transducer that converts the load applied to it into a measurable (analog or digital) output. The output is proportional to the force or load applied. Below we will describe how to use load cells and the different types of load cells for force measurement.

什么是称重传感器和力传感器?原理、特点是什么?

Principle of operation of load cells

The conversion is achieved by the physical deformation of strain gauges, which are combined to the load cell structure. The strain gauge is connected to a bridge circuit with four strain gauges (full bridge), two gauges (half bridge) or one gauge (quarter bridge). With half and quarter bridges, the bridge is completed using a precision monitor.

Additional bondable resistors are configured in the bridge circuit to compensate for the effect of temperature on the zero or no-load signal as well as sensitivity (due to the output caused by the applied load, plus another resistor that renders the bridge ineffective at no load) .

The completed Wheatstone bridge requires a stable DC power supply to excite the circuit. This is typically 5 Vdc or 10 Vdc, but can be any value from 1 Vdc to 18 Vdc.

When stress is applied to the bonded strain gauge, a change in resistance occurs that unbalances the bridge. This provides an output signal that is linearly proportional to the stress value. The value of this signal is also proportional to the excitation voltage, typically a few millivolts.

 

Load Cell Output Options

These low-level millivolt signals are compatible with a variety of custom strain gauge instruments. These instruments include digital displays, analog and digital amplifiers. A typical analog amplifier will produce higher level voltages (0-5Vdc, 0-10Vdc) or currents (0-20mA, 4-20mA) for subsequent processing.

Digital amplifiers typically provide RS232, RS422 or RS485 outputs using either a common ASCII protocol or a range of more specialized industry-specific protocols that have been developed (e.g. Modbus). Both analog and digital instruments have been reduced in size (miniaturized) enough to allow items to be mounted within the body of a load cell or force transducer.

Load cell designs are distinguished either by the type of output signal they produce (pneumatic, hydraulic or electrical) or by the way they detect loads or weights (bending, shear, compression, tension, etc.).

Load cells can take many forms in order to meet a wide variety of uses in R&D and industrial applications. However, most designs today use strain gauges as sensing elements, where foils or semiconductors are used.

Foil gauges offer the widest selection of load cell designs and therefore tend to be the most commonly used. Strain gauge patterns provide measurements of tensile, compressive and shear forces.

Semiconductor strain gauges have a smaller pattern range, but offer the advantage of being smaller and provide a large gauge factor, resulting in a larger output for the same given stress. Because of these characteristics, they tend to be used in miniature load cell designs. Proof rings are used for load measurement, using calibrated metal rings whose motion is measured with precision displacement transducers.

 

Load cell operating principle

Strain gauge load cells convert the load acting on them into an electrical signal. The gauges themselves are bonded to a beam or structural member that deforms when a force is applied. In most cases, four strain gauges are used to obtain maximum sensitivity and temperature compensation. Two gauges are usually in tension and two in compression and are wired by compensation adjustment. When a load is applied, the strain causes the resistance of the load to change in proportion to the load. As strain gauge versions continue to improve their accuracy while reducing unit cost, other load cells are becoming less popular.

Early load cell designs simply used strain gauges to measure the direct stress that is introduced into the metal element when subjected to tensile or compressive forces. Bending beam type designs used strain gauges to monitor stresses in the sensing element when subjected to bending forces. More recently, shear stress measurements have been adopted as a more efficient method of load determination because the method is less dependent on the direction of the force applied to the load cell.

Other types of load cells include hydraulic (or hydrostatic), pneumatic, piezoelectric, and vibroelectric load cells.

 

The technical team of Changzhou Ruerte Measurement & Control Systems Co., Ltd. has 20 years of experience in the design and production of advanced sensors in Germany, and has deep attainments in the handling of the structure and material properties of various types of force transducers abroad as well as in processing. At the same time, we are rooted in the research of sensor design and manufacturing technology, strengthening technological innovation and improving product design. Continuously introduce advanced production equipment and manufacturing process at home and abroad, and constantly enhance their core competitiveness and have won dozens of design and invention patents and certificates, widely favored by the market. The company produces pressure sensors, force sensors, high temperature sensors, load cells and multi-dimensional force measurement sensors: high precision, strong resistance to bias load, easy to install, small crosstalk, impact resistance, good stability, small size, fast response, overload capacity, has been used in military, aerospace, nuclear power grade measurement, machine arm precision control, surface grinding and polishing, machining center precision carving processing, medical Precision equipment testing.

Scan the QR code to read on your phone

Related Reading
 What are the materials of the force sensor?
2022.08.03
What are the materials of the force sensor?
   A force sensor consists of three parts: a bridging circuit made up of one or more elastomers (such as a Wheatstone bridge), elastomers that deform when subjected to stress, a resistance strain gauge that senses the deformation, an adhesive that holds the resistance strain gauge to the elastomer and conducts the strain, and a sealant that protects the electronic circuit. When the force sensor is subjected to an external force, the strain gauge attached to the elastomer will deform and cause a change in resistance. The change in resistance causes the Wheatstone bridge to lose balance and outputs an electrical signal that is linearly proportional to the external force. Next, let's introduce its materials: 1, elastomer material The elastomer material of the force sensor is usually made of metal, most of the available materials are aluminum alloy, alloy steel and stainless steel. The alloy material is not only rigid to ensure consistent deformation and deformation recovery, but also has good weather resistance and corrosion resistance. The main requirements of elastomers are to accurately transmit force information, maintain deformation consistency, and complete the reset under the same force. 2, strain gauge and resistance element materials The composition of the resistance strain gauge is complex and it is a composite manufacturing product. The combination of substrate and strain copper for strain gauges is constantly changing, with about 1,000 products available today. Generally, the substrate is a polymer film material, and the strain material is high purity constantan. The resistance grid lines with different induced deformation were optically treated and Constantan was etched on the substrate. Therefore, the quality of the resistance strain gauge is not only related to the metal purity of the matrix material and composite material, but also related to the composite process, etching process and technology, etching chemical materials and post-treatment process and material. 3, the material of the patch adhesive Two-component polymer epoxy series adhesives are mainly used for the installation of resistance strain gauges. The properties of polymer chemical products are closely related to physical and chemical indexes such as purity, molecular chain structure and size, storage time, component ratio, molecular modification, mixing method, mixing curing time, curing time, curing temperature, additives and percentage of each component. 4, sealant material Special silicone rubber sealant series are used in the initial phase of force sensors with insufficient welding processes and equipment. Silicone rubber has long-term chemical stability. Therefore, it has excellent anti-corrosion, moisture, aging resistance, insulation and other properties. It has long been the product of choice for all sealants. 5, load cell wire material The wire is still part of the force sensor. Personal experience of metal materials of force sensor wires with quality differences due to the use of household appliance wires. After all, the wire is the channel for bridge power supply, signal output and long line excitation voltage compensation. Silver-plated wire is definitely better than copper wire, and copper wire is definitely better than aluminum wire. Its role is self-evident. With the increase of various high frequency and radio wave interference, good shielding of force sensors is also an important method to protect signal stability. In addition, environmental corrosion, pest and mouse invasion, fire and flame retardant also require the sensor protective layer material to prevent corrosion, insect infestation, fire and explosion, and even need armor protection, shell protection and other methods.  
Read Article
What is a force sensor? What are the types?
2022.07.26
What is a force sensor? What are the types?
  Force is the direct cause of changes in material motion, and force sensors can detect mechanical quantities such as tension, tension and compression, weight, torque, internal stress and strain. The force sensor is usually composed of a sensitive element and a conversion element, which is a device or equipment that can sense the specified measurement data and convert it into usable signals according to certain rules. Force sensors have been widely used in this new era, and are now widely used in the industrial field. In order to use the force sensor well, it is necessary to have a certain understanding of the definition and function of the force sensor. So, what is a force sensor? What are the types? Let's take a look! There are many kinds of force sensors, which can be divided into resistance strain sensors, piezomagnetic sensors and piezoelectric sensors according to different physical effects and detection principles. 1, strain type force sensor. Strain gauge force sensors are widely used in all force sensors. It has high measurement accuracy and can measure dynamic and static forces from small to large, and its usage accounts for about 90% of the total sensor. The working principle of the strain gauge force sensor is basically the same as that of the strain gauge pressure sensor, which is also composed of an elastic sensitive element and a strain gauge attached to it. The strain gauge force sensor first converts the measured force into the strain of the elastic element, and then reads the output by measuring the strain using the resistance strain effect. 2, voltage power sensor. When a ferromagnetic material is strained and pressed by an external force, its permeability will change with the magnitude and direction of the stress. When the tension acts, the permeability increases along the direction of the force, but decreases slightly in the direction of the vertical force, and the change of the permeability under pressure is just the opposite. This physical phenomenon is the piezomagnetic effect of ferromagnetic materials, which can be used for force measurement. 3. Piezoelectric sensor. Piezoelectric sensors can measure various dynamic forces, mechanical shock and vibration, and are widely used in the fields of acoustics, medicine, mechanics and navigation, with small size, light weight, high frequency response and high signal-to-noise ratio. According to the shape, the load cell can be divided into cantilever load cell, S-shaped load cell, plate load cell, box type load cell and spoke type load cell. Force sensors have penetrated into a wide range of fields, such as resource survey, ocean exploration, space development, industrial production, environmental protection, medical diagnosis, bioengineering, and even cultural relics protection. Force sensors have long penetrated into a wide range of fields, such as resource survey, ocean exploration, space development, industrial production, environmental protection, medical diagnosis, bioengineering, and even cultural relics protection. It is no exaggeration to say that almost every modern project, from the vast space, to the vast ocean, to a variety of complex engineering systems, can not be separated from a variety of force sensors.
Read Article
Analysis of characteristics and working principle of torque sensor
2022.01.11
Analysis of characteristics and working principle of torque sensor
    The emergence of the torque sensor itself should be used in all walks of life in a short time and become an indispensable variety in the sensor series. First, the characteristics of torque sensor: 1, can measure both static torque, can also measure rotary torque, can measure both static torque, can also measure dynamic torque. 2, high detection accuracy, good stability; Prevent interference; 3, small size, light weight, diverse installation structure, easy to install and use. Continuous measurement of positive and negative torques without repeating 0. 4, no conductive ring and other wear parts, can be high-speed long time running. 5, the sensor output high level frequency signal can be directly sent to the computer for processing. 6, measuring the strength of the elastomer can withstand high overload. Second, the torque sensor measurement principle: The special torsion strain gauge is attached to the measured elastic shaft as a strain glue to form a strain bridge and supply power to the strain bridge. The electrical signal of torsion of the elastic shaft can be measured. After amplifying this deformation signal, it undergoes pressure/frequency conversion and becomes a frequency signal proportional to the torsion reaction. The energy input and signal output of the system are handled by two sets of special annular transformers with a gap, thus providing contactless energy and signal transmission. Third, the torque sensor principle structure: The basic torque sensor-variable bridge is formed by attaching a special torsion measuring sheet to a special elastic shaft. Fixed on the shaft: (1) the secondary coil of the energy ring transformer, (2) the primary coil of the signal ring transformer, (3) the axis printed circuit, and the circuit board including the rectifier stable power supply, the instrument amplifier circuit, the V/F conversion circuit and the signal output circuit. 4. Working process of torque sensor: The sensor is supplied with a 15V power supply, a crystal oscillator on the magnetic circuit generates a 400Hz square wave, and an AC magnetoelectric power supply is generated through the TDA2030 power amplifier. The energy loop transformer T1 is transferred from the stationary primary coil to the rotating secondary coil. Results The AC power supply obtained 5V DC power supply through the rectifier filter circuit on the shaft. The power supply is used as a working power supply for the operational amplifier AD822. A high precision power supply consisting of a reference power supply AD589 and a dual operational discharge AD822 generates a 4.5V DC power supply. The power supply is used as a working power supply for bridging power supplies, amplifiers, and V/F converters. When the elastic shaft is twisted, the MV-class deformation signal detected on the deformation bridge is amplified by the instrument amplifier AD620 to a strong signal of 1.5v 1v, and then converted into a frequency signal by the V/F converter LM131. Through the signal ring transformer T2, it is possible to pass from the rotating primary coil to the stationary secondary coil, and then through the signal processing circuit filter of the sensor housing, shaping, obtaining a frequency signal proportional to the torque received by the elastic bearing, because the rotating transformer is in motion, zero between the static rings. With a gap of only a few millimeters, part of the sensor shaft is sealed inside the metal housing, forming an effective shield, and therefore has a strong anti-interference ability.
Read Article
What are the advantages and disadvantages of torque sensors?
2022.01.08
What are the advantages and disadvantages of torque sensors?
    The large-scale use of a thing has its advantages and disadvantages, such as torque sensors have advantages and disadvantages in the development process. Torque sensor, also known as torque sensor, torque sensor, torque sensor, torque meter, divided into dynamic and static two categories, of which dynamic torque sensor can also be called torque sensor, non-contact torque sensor. The following is a brief introduction to the advantages and disadvantages of torque sensors. First, the advantages of torque sensor With the continuous improvement and development of automatic control system, the reliability and response speed of torque sensor are put forward higher requirements. Torque sensors show the following trends. 1. The test system is developing in the direction of miniaturization, digitalization, intelligence, virtualization and networking. 2, from single function to multi-function development, including self-compensation, self-correction, adaptation, self-diagnosis, remote setting, state combination, information storage and memory; 3. Develop in the direction of miniaturization and integration. The detection part of the sensor can be miniaturized through rational design and optimization of the structure, and the IC part can integrate as many semiconductor components and resistors as possible into a single IC part, thus reducing the number of external parts. 4, static test to dynamic online detection direction; Second, the shortcomings of the torque sensor The success of the telemetry torque meter lies in overcoming two defects of the electric slip ring. But there are three drawbacks. One is vulnerable to the use of field electromagnetic waves. The second is because it is a battery power supply, so it can only be used in the short term. Third, the structure is attached to the rotating axis, which is easy to cause the dynamic balance problem of high speed, so it is more prominent on the small distance and small diameter axis. The digital torque sensor absorbs the advantages of the above methods and overcomes the defects. Based on the deformation sensor, two sets of rotary transformers are designed to realize the non-contact transmission of energy and signal. The transmission of the torque signal has nothing to do with rotation or not, nothing to do with the speed, and nothing to do with the direction of rotation. Three, the main characteristics of the torque sensor are as follows: Dynamic and static torque can be measured. The stability of the check is very good, the anti-interference performance is very strong, and the accuracy is very good. It does not need to adjust 0 each time when measuring, and can continuously measure the positive and negative torque. Its signal output can be manipulated by you, with a choice of pulse wave or waveform - square wave. Wide measuring range. There are 0 to 1000Nm standards to choose from, and some non-standard ones such as 20,00 NM, 100,000 NM, 100,000 NM, etc., can be customized using a special range of customization. The volume is very small, the heavy sensor can be used independently from the secondary instrument, and only the 15V and -15V power supply provided by the socket pin number can output the pulse wave or equal square wave frequency signal proportional to the impedance and the forward relationship, which is very light and convenient to install.
Read Article

Follow us for more information

  • 官方微信 【 Official WeChat 】
  • 手机网站 【 Mobile Website 】
Username used for comment:
Feedback
Description:
We use cookies to improve our site and your shopping experience. By continuing to browse our site you accept our cookie policy. Find out more
Cookie

WhatsApp:+86 15240527565

Copyright © 2021 Changzhou Right Measurement and Control System Co., Ltd
www.300.cn