官方微信

SEARCH

Submit
Cancel

NEWS

Focus on Right, share the wonderful moments of enterprises and exhibitions, popularize product technical knowledge, and answer frequently asked questions

/
/
/
Changzhou six-dimensional force sensor manufacturers introduce: let the robot is given the sense of touch

Changzhou six-dimensional force sensor manufacturers introduce: let the robot is given the sense of touch

(Summary description)With millions of years of evolution, humans learned to walk upright, learned to use tools, in order to adapt to the complex and diverse environment, humans also have a strong and sensitive sensory input, relying on the interplay between the various senses, humans can complete a variety of tasks, so there is a technologically advanced today.

Changzhou six-dimensional force sensor manufacturers introduce: let the robot is given the sense of touch

(Summary description)With millions of years of evolution, humans learned to walk upright, learned to use tools, in order to adapt to the complex and diverse environment, humans also have a strong and sensitive sensory input, relying on the interplay between the various senses, humans can complete a variety of tasks, so there is a technologically advanced today.

Information

With millions of years of evolution, humans learned to walk upright, learned to use tools, in order to adapt to the complex and diverse environment, humans also have a strong and sensitive sensory input, relying on the interplay between the various senses, humans can complete a variety of tasks, so there is a technologically advanced today.

常州六维力传感器厂家介绍:让机器人被赋予触觉

Cooperation between the various human senses is always going on. Think about how we use the key to unlock a door in a dark situation. First, we use our eyes to try to see where the keyway is, then we insert the key, but when the key is actually inserted into the eye of the lock, we do not look, but use our sense of touch to make the final adjustment until the key is inserted into the eye of the lock. This operation is very natural to humans, so almost no one will think about how the whole process is carried out.

Generally speaking, robots do not have a sense of touch, but they can "evolve" and benefit from it. By giving robots six-dimensional force sensors, they can have a sense of touch and manipulate objects in simple environments without losing greater accuracy and sensitivity.

Most robots designed for collaborative applications have built-in force and torque sensing to ensure safety, especially when working close to or directly with humans. But that's not enough, because we humans like to leave the dull, repetitive, dirty and dangerous tasks to the mechatronic robots. Therefore, we focus on stand-alone or integrated six-dimensional force sensors that can actually work, and only by integrating these high-end sensors into mechatronic robots can we achieve our goals.

Thanks to proven sensor solutions, new designs and intelligent software, we have made it possible for the robot to touch and "feel" the technology. In robotics, vision and haptics are complementary approaches. As a result, industry experts expect that touch sensing will soon be added to mainstream robotics applications, just like vision technology.

In machining, such as grinding, deburring, grinding and polishing, getting a robot to do these tasks used to be very complex, requiring a lot of programming based on space volume and a lot of time for error correction. But with the integration of a six-dimensional force sensor, using the sensor's path recording capability, the operator can simply grab the end-of-arm device and make the desired movement. The sensor records the force and direction applied by the operator, and the robot can then repeat the operator's movements. This will greatly increase efficiency and will help to ensure the safety of the operator's workers.

In addition, six-dimensional force sensors can help with product processing positioning, product testing, product packaging, and robotic assembly.

As an example, precision assembly such as piston assembly or gear assembly is a common application for six-dimensional force sensors. The operating plane for these precision installations is not just vertical or horizontal, but in some cases the operating platform will be at an angle, which makes the actual assembly very difficult and the accuracy requirements difficult to guarantee. The difficulty in the actual assembly is not only that, the accuracy required for this application is currently limited to vision technology, as there will be gaps between parts in the actual assembly, and the gaps are only one tenth of the diameter of a human hair, so the vision technology alone is still unable to achieve perfect alignment. Therefore, the only way to achieve perfect assembly in these practical applications is to add haptics.

 

There are various types of six-dimensional force sensors based on strain gauge, optical or capacitive technologies. Each technology has different performance levels, lifetimes, calibration requirements and costs. Among the many six-dimensional force transducers, the six-dimensional force transducer from RALT Technology stands out for its unbeatable performance and excellent cost performance.

 

The RIELT six-dimensional force sensor can measure forces and moments in x, y and z directions. The six-dimensional force transducer has a rugged construction, excellent non-linearity, high accuracy and high overload capacity.

In practice, the six-dimensional force sensor from RALT Technology has a very small deflection even when very heavy loads are applied. This is very important for robots, because many high precision robots require very precise tool center points, and trying to achieve this often requires a huge additional investment. If the sensor has a lot of offset under load, then this accuracy will no longer exist.

Not only that, but RALT is also able to package all the electronic components of a six-dimensional force sensor, including amplifiers, into a smaller package that requires only one cable to meet the power and communication requirements of the external interface.

In today's world of rising labor costs in China, automation will also bring benefits to companies. In addition to heavy machining tasks, small component assembly tasks that originally relied on the human finger touch to complete, such as cell phone or computer assembly lines, can be greatly improved by adding six-dimensional force sensors that enable robots to be given the sense of touch to assist humans or complete these tasks independently.

Robots with six-dimensional force sensors have a sense of touch, and they will become more powerful and can perform more complex and dull or dangerous tasks that should be done by humans. Companies, especially small and medium-sized ones, will continue to benefit from this.

Scan the QR code to read on your phone

Related Reading
 What are the materials of the force sensor?
2022.08.03
What are the materials of the force sensor?
   A force sensor consists of three parts: a bridging circuit made up of one or more elastomers (such as a Wheatstone bridge), elastomers that deform when subjected to stress, a resistance strain gauge that senses the deformation, an adhesive that holds the resistance strain gauge to the elastomer and conducts the strain, and a sealant that protects the electronic circuit. When the force sensor is subjected to an external force, the strain gauge attached to the elastomer will deform and cause a change in resistance. The change in resistance causes the Wheatstone bridge to lose balance and outputs an electrical signal that is linearly proportional to the external force. Next, let's introduce its materials: 1, elastomer material The elastomer material of the force sensor is usually made of metal, most of the available materials are aluminum alloy, alloy steel and stainless steel. The alloy material is not only rigid to ensure consistent deformation and deformation recovery, but also has good weather resistance and corrosion resistance. The main requirements of elastomers are to accurately transmit force information, maintain deformation consistency, and complete the reset under the same force. 2, strain gauge and resistance element materials The composition of the resistance strain gauge is complex and it is a composite manufacturing product. The combination of substrate and strain copper for strain gauges is constantly changing, with about 1,000 products available today. Generally, the substrate is a polymer film material, and the strain material is high purity constantan. The resistance grid lines with different induced deformation were optically treated and Constantan was etched on the substrate. Therefore, the quality of the resistance strain gauge is not only related to the metal purity of the matrix material and composite material, but also related to the composite process, etching process and technology, etching chemical materials and post-treatment process and material. 3, the material of the patch adhesive Two-component polymer epoxy series adhesives are mainly used for the installation of resistance strain gauges. The properties of polymer chemical products are closely related to physical and chemical indexes such as purity, molecular chain structure and size, storage time, component ratio, molecular modification, mixing method, mixing curing time, curing time, curing temperature, additives and percentage of each component. 4, sealant material Special silicone rubber sealant series are used in the initial phase of force sensors with insufficient welding processes and equipment. Silicone rubber has long-term chemical stability. Therefore, it has excellent anti-corrosion, moisture, aging resistance, insulation and other properties. It has long been the product of choice for all sealants. 5, load cell wire material The wire is still part of the force sensor. Personal experience of metal materials of force sensor wires with quality differences due to the use of household appliance wires. After all, the wire is the channel for bridge power supply, signal output and long line excitation voltage compensation. Silver-plated wire is definitely better than copper wire, and copper wire is definitely better than aluminum wire. Its role is self-evident. With the increase of various high frequency and radio wave interference, good shielding of force sensors is also an important method to protect signal stability. In addition, environmental corrosion, pest and mouse invasion, fire and flame retardant also require the sensor protective layer material to prevent corrosion, insect infestation, fire and explosion, and even need armor protection, shell protection and other methods.  
Read Article
What is a force sensor? What are the types?
2022.07.26
What is a force sensor? What are the types?
  Force is the direct cause of changes in material motion, and force sensors can detect mechanical quantities such as tension, tension, pressure, weight, torque, internal stress and strain. The force sensor is usually composed of a sensitive element and a conversion element, which is a device or equipment that can sense the specified measurement data and convert it into usable signals according to certain rules. Force sensors have been widely used in this new era, and are now widely used in the industrial field. In order to use the force sensor well, it is necessary to have a certain understanding of the definition and function of the force sensor. So, what is a force sensor? What are the types? Let's take a look! There are many kinds of force sensors, which can be divided into resistance strain sensors, piezomagnetic sensors and piezoelectric sensors according to different physical effects and detection principles. 1, strain type force sensor. Strain gauge force sensors are widely used in all force sensors. It has high measurement accuracy and can measure dynamic and static forces from small to large, and its usage accounts for about 90% of the total sensor. The working principle of the strain gauge force sensor is basically the same as that of the strain gauge pressure sensor, which is also composed of an elastic sensitive element and a strain gauge attached to it. The strain gauge force sensor first converts the measured force into the strain of the elastic element, and then reads the output by measuring the strain using the resistance strain effect. 2, voltage power sensor. When a ferromagnetic material is strained and pressed by an external force, its permeability will change with the magnitude and direction of the stress. When the tension acts, the permeability increases along the direction of the force, but decreases slightly in the direction of the vertical force, and the change of the permeability under pressure is just the opposite. This physical phenomenon is the piezomagnetic effect of ferromagnetic materials, which can be used for force measurement. 3. Piezoelectric sensor. Piezoelectric sensors can measure various dynamic forces, mechanical shock and vibration, and are widely used in the fields of acoustics, medicine, mechanics and navigation, with small size, light weight, high frequency response and high signal-to-noise ratio. According to the shape, the load cell can be divided into cantilever load cell, S-shaped load cell, plate load cell, box type load cell and spoke type load cell. Force sensors have penetrated into a wide range of fields, such as resource survey, ocean exploration, space development, industrial production, environmental protection, medical diagnosis, bioengineering, and even cultural relics protection. Force sensors have long penetrated into a wide range of fields, such as resource survey, ocean exploration, space development, industrial production, environmental protection, medical diagnosis, bioengineering, and even cultural relics protection. It is no exaggeration to say that almost every modern project, from the vast space, to the vast ocean, to a variety of complex engineering systems, can not be separated from a variety of force sensors.
Read Article
Analysis of characteristics and working principle of torque sensor
2022.01.11
Analysis of characteristics and working principle of torque sensor
    The emergence of the torque sensor itself should be used in all walks of life in a short time and become an indispensable variety in the sensor series. First, the characteristics of torque sensor: 1, can measure both static torque, can also measure rotary torque, can measure both static torque, can also measure dynamic torque. 2, high detection accuracy, good stability; Prevent interference; 3, small size, light weight, diverse installation structure, easy to install and use. Continuous measurement of positive and negative torques without repeating 0. 4, no conductive ring and other wear parts, can be high-speed long time running. 5, the sensor output high level frequency signal can be directly sent to the computer for processing. 6, measuring the strength of the elastomer can withstand high overload. Second, the torque sensor measurement principle: The special torsion strain gauge is attached to the measured elastic shaft as a strain glue to form a strain bridge and supply power to the strain bridge. The electrical signal of torsion of the elastic shaft can be measured. After amplifying this deformation signal, it undergoes pressure/frequency conversion and becomes a frequency signal proportional to the torsion reaction. The energy input and signal output of the system are handled by two sets of special annular transformers with a gap, thus providing contactless energy and signal transmission. Third, the torque sensor principle structure: The basic torque sensor-variable bridge is formed by attaching a special torsion measuring sheet to a special elastic shaft. Fixed on the shaft: (1) the secondary coil of the energy ring transformer, (2) the primary coil of the signal ring transformer, (3) the axis printed circuit, and the circuit board including the rectifier stable power supply, the instrument amplifier circuit, the V/F conversion circuit and the signal output circuit. 4. Working process of torque sensor: The sensor is supplied with a 15V power supply, a crystal oscillator on the magnetic circuit generates a 400Hz square wave, and an AC magnetoelectric power supply is generated through the TDA2030 power amplifier. The energy loop transformer T1 is transferred from the stationary primary coil to the rotating secondary coil. Results The AC power supply obtained 5V DC power supply through the rectifier filter circuit on the shaft. The power supply is used as a working power supply for the operational amplifier AD822. A high precision power supply consisting of a reference power supply AD589 and a dual operational discharge AD822 generates a 4.5V DC power supply. The power supply is used as a working power supply for bridging power supplies, amplifiers, and V/F converters. When the elastic shaft is twisted, the MV-class deformation signal detected on the deformation bridge is amplified by the instrument amplifier AD620 to a strong signal of 1.5v 1v, and then converted into a frequency signal by the V/F converter LM131. Through the signal ring transformer T2, it is possible to pass from the rotating primary coil to the stationary secondary coil, and then through the signal processing circuit filter of the sensor housing, shaping, obtaining a frequency signal proportional to the torque received by the elastic bearing, because the rotating transformer is in motion, zero between the static rings. With a gap of only a few millimeters, part of the sensor shaft is sealed inside the metal housing, forming an effective shield, and therefore has a strong anti-interference ability.
Read Article
What are the advantages and disadvantages of torque sensors?
2022.01.08
What are the advantages and disadvantages of torque sensors?
    The large-scale use of a thing has its advantages and disadvantages, such as torque sensors have advantages and disadvantages in the development process. Torque sensor, also known as torque sensor, torque sensor, torque sensor, torque meter, divided into dynamic and static two categories, of which dynamic torque sensor can also be called torque sensor, non-contact torque sensor. The following is a brief introduction to the advantages and disadvantages of torque sensors. First, the advantages of torque sensor With the continuous improvement and development of automatic control system, the reliability and response speed of torque sensor are put forward higher requirements. Torque sensors show the following trends. 1. The test system is developing in the direction of miniaturization, digitalization, intelligence, virtualization and networking. 2, from single function to multi-function development, including self-compensation, self-correction, adaptation, self-diagnosis, remote setting, state combination, information storage and memory; 3. Develop in the direction of miniaturization and integration. The detection part of the sensor can be miniaturized through rational design and optimization of the structure, and the IC part can integrate as many semiconductor components and resistors as possible into a single IC part, thus reducing the number of external parts. 4, static test to dynamic online detection direction; Second, the shortcomings of the torque sensor The success of the telemetry torque meter lies in overcoming two defects of the electric slip ring. But there are three drawbacks. One is vulnerable to the use of field electromagnetic waves. The second is because it is a battery power supply, so it can only be used in the short term. Third, the structure is attached to the rotating axis, which is easy to cause the dynamic balance problem of high speed, so it is more prominent on the small distance and small diameter axis. The digital torque sensor absorbs the advantages of the above methods and overcomes the defects. Based on the deformation sensor, two sets of rotary transformers are designed to realize the non-contact transmission of energy and signal. The transmission of the torque signal has nothing to do with rotation or not, nothing to do with the speed, and nothing to do with the direction of rotation. Three, the main characteristics of the torque sensor are as follows: Dynamic and static torque can be measured. The stability of the check is very good, the anti-interference performance is very strong, and the accuracy is very good. It does not need to adjust 0 each time when measuring, and can continuously measure the positive and negative torque. Its signal output can be manipulated by you, with a choice of pulse wave or waveform - square wave. Wide measuring range. There are 0 to 1000Nm standards to choose from, and some non-standard ones such as 20,00 NM, 100,000 NM, 100,000 NM, etc., can be customized using a special range of customization. The volume is very small, the heavy sensor can be used independently from the secondary instrument, and only the 15V and -15V power supply provided by the socket pin number can output the pulse wave or equal square wave frequency signal proportional to the impedance and the forward relationship, which is very light and convenient to install.
Read Article

Follow us for more information

  • 官方微信 【 Official WeChat 】
  • 手机网站 【 Mobile Website 】
Username used for comment:
Feedback
Description:
We use cookies to improve our site and your shopping experience. By continuing to browse our site you accept our cookie policy. Find out more
Cookie
Copyright © 2021 Changzhou Right Measurement and Control System Co., Ltd
www.300.cn